报告时间:2021年5月27日(星期四)15:30-16:30
报告平台:腾讯会议 ID:879 606 982
报 告 人:史恩慧 教授
工作单位:苏州大学
举办单位:数学学院
报告简介:
We study the topological characters of a continuum $X$ and the algebraic structures of a group $G$ that forbid $G$ from acting on $X$ distally and minimally. Explicitly, we obtain the following results: (1) Let $G$ be a lattice in ${\rm SL}(n, \mathbb R)$ with $n\geq 3$ and $\mathcal S$ be a closed surface. Then $G$ has no distal minimal action on $\mathcal S$. (2) If $X$ admits a distal minimal action by a finitely generated amenable group, then the first \v Cech cohomology group $ {\check H}^1(X)$ with integer coefficients is nontrivial. In particular, if $X$ is homotopically equivalent to a CW complex, then $X$ cannot be simply connected.
报告人简介:
史恩慧,苏州大学数学科学学院,教授。主要从事群作用拓扑动力系统研究,在TAMS、Fund. Math.、ETDS、Israel Math.、PAMS等核心期刊发表论文30余篇。主持国家面上项目2项, 参加重大项目子课题1项。