报告时间:2023年8月2日(星期三)10:00-11:00
报告地点:翡翠科教楼A座1603
报 告 人:王璐 教授
工作单位:密西根大学生物统计学系
举办单位:计算机与信息学院
报告简介:
In this talk, we present recent advances and statistical causal learning developments for evaluating Dynamic Treatment Regimes (DTR), which allow the treatment to be dynamically tailored according to evolving subject-level data. Identification of an optimal DTR is a key component for precision medicine and personalized health care. We will first present a tree-based doubly robust reinforcement learning (T-RL) method, which builds a decision tree that maintains the nature of batch-mode reinforcement learning, and then a new Stochastic-Tree Search method called ST-RL for evaluating optimal DTRs, which contributes to the existing literature in its non-greedy policy search and demonstrates outstanding performances even with a large number of covariates. In addition, we consider a common challenge with practical “restrictions” and develop a Restricted Tree-based Reinforcement Learning (RT-RL) method to address this challenge. We illustrate the method using an observational dataset to estimate a two-stage stepped-up DTR for guiding the level of care placement for adolescents with substance use disorder.
报告人简介:
王璐,博士,现任美国密西根大学生物统计学系终身教授,系副主任。2002年本科毕业于北京大学,2008年博士毕业于哈佛大学。研究领域包括评估优化动态治疗方案的统计方法、个性化医疗、因果推断、非参数和半参数回归、缺失数据分析、以及纵向(相关/聚类)数据分析等。在JASA、Biometrika、Biometrics、AoAS等学术期刊上发表论文139余篇,并合著了一章书籍。现任JASA和Biometrics的副主编。